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Abstract. The Sponge function is known to achieve 2¢/2 security, where c is its capac-
ity. This bound was carried over to its keyed variants, such as SpongeWrap, to achieve
amin{2¢/2, 2¢} security bound, with « the key length. Similarly, many CAESAR com-
petition submissions were designed to comply with the classical 2¢/2 security bound.
We show that Sponge-based constructions for authenticated encryption can achieve the
significantly higher bound of min{Zb/z, 2¢,2K}, with b > c the permutation size, by
proving that the CAESAR submission NORX achieves this bound. The proof relies
on rigorous computation of multi-collision probabilities, which may be of independent
interest. We additionally derive a generic attack based on multi-collisions that matches
the bound. We show how to apply the proof to five other Sponge-based CAESAR
submissions: Ascon, CBEAM/STRIBOB, ICEPOLE, Keyak, and two out of the three
PRIMATES. A direct application of the result shows that the parameter choices of some
of these submissions are overly conservative. Simple tweaks render the schemes con-
siderably more efficient without sacrificing security. We finally consider the remaining
one of the three PRIMATESs, APE, and derive a blockwise adaptive attack in the nonce-
respecting setting with complexity 2¢/2 | therewith demonstrating that the techniques
cannot be applied to APE.

Keywords. Authenticated encryption, CAESAR, Ascon, CBEAM, ICEPOLE, Keyak,
NORX, PRIMATEs, STRIBOB, Multi-collisions.
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1. Introduction

Authenticated encryption schemes, cryptographic functions that aim to simultaneously
provide data privacy and integrity, have gained renewed attention in light of the CAESAR
competition [25]. A common approach to building such schemes is to design a block
cipher mode of operation, as in CCM [95], OCB1-3 [55,78,79], EAX [14], GCM [57],
COPA [5], OTR [63], AEZ [48], and SCT [72]. Nevertheless a significant fraction of the
CAESAR competition submissions use modes of operation for permutations.

Most of the permutation-based modes follow the basic Sponge design [16]: a state
is maintained and regularly updated using a permutation. The state is divided into an
outer part of r bits, through which the user enters or extracts data, and an inner part of ¢
bits, which is out of the user’s control. The rate » determines how much plaintext can be
processed per permutation call, which gives an estimate of the algorithm’s performance.
Keccak, the eventual winner of the competition and now standardized as SHA-3 [35],
internally uses the Sponge construction. The Sponge design also found adoption in the
field of lightweight hash functions [24,45].

Security of the Sponge construction as a hash function follows from the fact that
the user can only affect the outer state, hence adversaries only succeed with significant
probability if they make on the order of 2¢/? permutation queries, as this many are
needed to produce an inner state collision [16]. Bertoni et al. [17] proved tightness of
this bound in the indifferentiability framework of Maurer et al. [56]. Keyed versions of
the Sponge construction, such as KeyedSponge [20] and SpongeWrap [19], are proven
up to a similar bound of 2°7¢ (pseudorandom function security for the former and
privacy and authenticity for the latter), assuming a limit of 2 on online complexity,
but are additionally restricted by the key size « to 2. The permutation-based CAESAR
candidates are no exception and recommend parameters based on either the 2¢/2 or 2¢=¢
bound, as shown in Table 1.

1.1. Beyond Conventional Security

Contrary to intuition, a wide range of permutation-based authenticated encryp-
tion schemes actually achieve significantly higher mode security: the privacy and
authenticity bound on the total complexity can be improved from min{2¢/2, 2¢} to
min{2(’ +a/2 gc, 2¢}. Intuitively, the improvement demonstrates that, in the nonce-
respecting setting, inner collisions are not relevant to the adversary; only full state
collisions are. We remark that in the nonce-reuse scenario [37,80] the privacy of the
scheme can be broken [19], and for authenticity the old bounds hold at best.

The main proof'in this work concerns NORX mode v1 and v2 [7, 8], but we demonstrate
its applicability to the CAESAR submissions Asconvl and v1.1 [33,34], CBEAM vl
[83,84],! ICEPOLE v1 and v2 [65,66], Keyak v1 [22],? two out of three PRIMATEs v1
and v1.02 [2,3], and STRIBOBv1 and v2 [81,85,86].3 Additionally, we note that it

ICBEAM was withdrawn after an attack by Minaud [62], but we focus on modes of operation.
2Keyak v2 follows a different design approach.
3Both CBEAM and STRIBOB use the BLNK Sponge mode [82].
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Table 1. Parameters and the achieved mode security levels of seven CAESAR submissions.

Scheme Version b c r K T Security
Ascon vl [33] 320 192 128 96 96 96
320 256 64 128 128 128
vl1.1[34] 320 192 128 128 128 128
320 256 64 128 128 128
CBEAM vl [84] 256 190 66 128 64 128
ICEPOLE vl, v2 [65,66] 1280 254 1026 128 128 128
1280 318 962 256 128 256
Keyak vl [22] 800 252 548 128..224 128 128..224
1600 252 1348 128..224 128 128..224
NORX vl [7] 512 192 320 128 128 128
1024 384 640 256 256 256
v2 [8] 512 128 384 128 128 128
1024 256 768 256 256 256
GIBBON/ HANUMAN vl, v1.02 [2,3] 200 159 41 80 80 80
280 239 41 120 120 120
STRIBOB vl, v2 [85,86] 512 254 258 192 128 192

We remark that ICEPOLE v1,v2 consists of three configurations (two with security level 128 and one with
security level 256) and Keyak v1 of four configurations (one with an 800-bit state and three with a 1600-bit
state)

directly applies to SpongeWrap [19] and DuplexWrap [22], upon which Keyakvl1 is
built.

Our results imply that the initial submissions of these CAESAR candidates were
overly conservative in choosing their parameters, since reducing ¢ would have lead to
the same bound. For instance, Ascon-128 could take (c,r) = (128, 192) instead of
(256, 64), NORX64 (the proposed mode with 256-bit security) could increase its rate
by 128 bits, and GIBBON-120 and HANUMAN-120 could increase their rate by a factor
of 4, without affecting their mode security levels.

These observations only concern the mode security, where characteristics of the
underlying permutation are set aside. Specifically, the concrete security of the under-
lying permutations plays a fundamental role in the choice of parameters. For instance,
the authors of Ascon [33,34], NORX [7,8], and PRIMATEs [2,3] acknowledge that
non-random properties of some of the underlying primitives exist. Furthermore, the
authenticity bound degrades as a function of the number of forgery attempts f:
min{20 /2 2¢/f,2¢}. In practical applications, the amount of forgery attempts may be
limited, but if this is not possible, caution must be taken. We refer to [75] for a discussion.

1.2. Tightness of the Result

The earlier version of this article by Jovanovic et al. [53] had a security bound of the
form min{2+)/2 2¢/r 2¢}, showing a security loss logarithmic relative to the rate.
This loss was, however, not justified by any existing attack; it arose as an artifact of
naively bounding the probability of a multi-collision occurring in the outer state, where
multiple evaluations of the underlying primitive map to the same outer value.
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In this article, we thoroughly analyze multi-collisions and derive bounds on the size
of multi-collisions for various possible choices of » and ¢. Most importantly, we can
conclude thatif r < c orr > ¢, multi-collisions have no effect on the security. If r ~ ¢,
the security loss approaches loglz.%’ as opposed to the factor r loss from [53]. We refer
to Table 2 for a comprehensive description of the bound. Note that for all schemes in
Table 1,r < corr > c.

The rigorous analysis of multi-collisions relies on an application of Stirling’s approx-
imation and the Lambert W function. It is not only applicable to Sponge-based modes.
For example, there are quite a few cryptographic schemes that have been attacked
using multi-collisions, such as block-cipher-based hashing schemes [73], identification
schemes [41], JH hash function [58], MDC-2 hash function [54], HMAC and ChopMD
MAC [68], the LED block cipher [70], iterated Even-Mansour [32], and strengthened
HMAC [88]. Multi-collisions have also influenced various security upper bounds. Typ-
ical examples are the indifferentiability proof for the ChopMD construction [27], the
collision resistance proof for the Lesamnta-LW hash function [46], and the indistin-
guishability proof for RMAC [52], where the bound is O(2"/n) due to the existence
of n-collisions. The compression function proposed by Hirose et al. [47] has a similar
type of bound. Finally, the recent line of research on the keyed Sponge and Duplex con-
structions [6,18,20,26,31,38,60,69] strongly relies on “multiplicities.” Some of these
security analyses can be improved using our rigorous analysis of multi-collisions.

For r < c, the old bound of [53] is dominated by 2 T¢)/2 and is in fact tight. The new
bound improves over the one of [53] for » > ¢, and in this work we additionally show
that the new bound is tight for all possible choices of (r, ¢). To this end, we present a
multi-collision-based adversary that meets the bound proven in our analysis. The attack
is described for a generalized Sponge construction that covers CBEAM, ICEPOLE,
Keyakvl, NORX, and STRIBOB. Even for variants with the additional XOR of the
secret key at the end, (Ascon, GIBBON, and HANUMAN, see Fig. 4), a similar adversary
with slightly higher complexity can meet the bound. A comparison of the earlier bound
of [53], the new bound, and the attack complexity for the case of ¢ = 256 and r > c is
given in Fig. 1.

1.3. APE

One of the interesting questions triggered by the publication of [53] was regarding APE,
the third of the PRIMATEs. In more detail, the schemes listed in Table 1 are proven
to achieve a beyond 2°/2 security level against nonce-respecting adversaries, but the
schemes are insecure against nonce-misusing adversaries. In contrast, APE is proven to
achieve 2¢/2 security in the nonce-reuse scenario [4], and it is of interest to investigate
what security guarantees APE offers against nonce-respecting adversaries. In this work,
we include an analysis of APE in this setting and show that there exists a nonce-respecting
blockwise adaptive adversary that can break the privacy with a total complexity of about
2¢/2_In other words, while APE is more robust against nonce-misusing adversaries up
to common prefix, in the nonce-respecting setting the schemes listed in Table 1 achieve
higher security. (We remark that the analysis in this work can be easily extended to the
case of blockwise adaptive adversaries.)



899

Beyond Conventional Security in Sponge-Based Authenticated...

‘0 < 4 pue 9g7 = 2 Jo ased oy 10} AJrxa[dwoos yoeye Juryojew Ay} pue ‘punoq paroidwr o (¢S] Te 39 d1a0ueAOf Aq punoq ay) jo uostredwo)) 1 81

(s31q) ogey

% O & 9 0 & o 0y & 9% Op & O O & % O & 9
R %% R B o %o %o % Vo T Tn B B0 T L T B %0 B G B e B B B B

L L L L L L L L L L I T N N T I T | mQN

——— e _ &

o= ~———ceoo e &

T £

. =

Pz o

: <

i e

TS¢ m

@

@

€SC  —~

o

=.

=

T T eeeees FPTTTIIITID ceeeeees — ({4 /nwu\
JAY4

‘|e 19 JIA0UBAO[ AQ pUNOg = =  pUNOG JNQ ==+ Ajxajdwo) yoepy ——



900 P. Jovanovic et al.

1.4. Publication History and Subsequent Work

An extended abstract of this article has appeared in the proceedings of ASIACRYPT
2014 [53]. This article is the full version of [53], and additionally includes the proofs
that were absent in the proceedings version. New with respect to the full version of [53]
are

(i) a more rigorous analysis of multi-collisions and the therewith induced improved
security bound (Sect. 3),
(ii) the generic attack on Sponge-based authenticated encryption schemes demonstrat-
ing tightness of the bound (Sect. 5),
(iii) a proof that, unlike the schemes of Table 1, APE does not achieve beyond 2¢/2
security in the nonce-respecting setting (Sect. 7).

Parts (i) and (ii) are due to Sasaki and Yasuda [90], with whom we have collaborated to
combine their ideas for a complete analysis of the Sponge-based modes.

In response to the observations made in [53], the designers of Asconand NORX have
reconsidered their parameter choices. The new parameter choices are also listed in Table 1
and testify of a significant security gain for Asconv1.1 [34] without sacrificing efficiency,
and a significant efficiency gain for NORX v2 [8] without sacrificing security. The adjust-
ments will make the schemes faster and more competitive. Mihajloska et al. [61] recently
generalized the analysis of [53] to CAESAR submission 7 -Cipher [42,43], which is
structurally different from NORX in the way it maintains state: a so-called “common
internal state” is used throughout the evaluation.

From a more general perspective, the work has triggered analysis in the direction of
high-efficiency full-state keyed Duplexes [31,60,89]. The result of Mennink et al. [60]
on the full-state keyed Duplex has triggered the designers of Keyak to perform a major
revision to their scheme. In more detail, Keyak v2 [23] is built on top of the “Motorist”
mode, an alternative to the full-state keyed Duplex that was analyzed by Daemen et
al. [31]. We remark that the results on the full-state keyed Sponges and Duplexes are
more general than the target design in this work. The most important difference between
[31,60] and our work is that we explicitly target nonce-based designs, and this allows
for beyond 2¢/2 security. The work has, to certain extent, furthermore triggered the use
of permutations for nonce-reuse secure authenticated encryption schemes [29,44,59]
beyond APE.

Parallel to the research on keyed Duplexes is the research on the keyed Sponges,
i.e., keyed versions of the Sponge that only aim for authenticity. Bertoni et al. [18]
introduced the original keyed Sponge. Chang et al. [26] suggested to put the key in the
inner part of the Sponge. Andreeva et al. [6] formalized and improved the analysis of the
outer- and inner-keyed sponges. The analysis was generalized to the full-state Sponge in
[31,38,60,69], following upon ideas that date back to the donkeySponge [21]. Beyond
authentication (and encryption), keyed versions of the Sponge have found applications
in reseedable pseudorandom sequence generation [18,39].
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1.5. Outline

We present our security model in Sect. 2. In Sect. 3, we perform an in-depth analysis
of multi-collisions with respect to Sponges. A security proof for NORX is derived in
Sect. 4. Tightness of the bound is proven in Sect. 5. In Sect. 6, we show that the proof
of NORX generalizes to other CAESAR submissions, as well as to SpongeWrap and
DuplexWrap. We consider the security of APE against nonce-respecting adversaries in
Sect. 7. The work is concluded in Sect. 8, where we also discuss possible generalizations
to Artemia [1].

2. Security Model

For n € N, let Perm(n) denote the set of all permutations on n bits. When writing

x < X for some finite set X , we mean that x gets sampled uniformly at random from
X. For x € {0,1}", and a,b < n, we denote by [x]? and [x]; the a leftmost and b
rightmost bits of x, respectively. For tuples (j, k), (j/, k") we use lexicographical order:
(j, k) > (j', k') means that j > j’,or j = j"and k > k.

Let IT be an authenticated encryption scheme, with an encryption function £ and a
decryption function D, where

(C,A) «— Ex(N; H,M,T) and M/L «— Dg(N; H,C,T;A).

Here, N denotes a nonce value, H a header, M a message, C a ciphertext, T a trailer,
and A an authentication tag. The values (H, T') will be referred to as associated data. If
verification is successful, then the decryption function Dk outputs M, and L otherwise.
The scheme I7 is also determined by a set of parameters such as the key size, state size,
and block size, but these are left implicit. In addition, we define $ to be an ideal version
of £k, where $ returns (C, A) & {0, 1}“"“‘H for every query (N; H, M, T).

We follow the convention in analyzing modes of operation for permutations by mod-
eling the underlying permutations as being drawn uniformly at random from Perm(b),
where b is a parameter determined by the scheme.

An adversary A is a probabilistic algorithm that has access to one or more oracles
O, denoted A°. By A9 = 1 we denote the event that A, after interacting with O,
outputs 1. We consider adversaries A that have unbounded computational power and
whose complexity is solely measured by the number of queries made to their oracles.
These adversaries have query access to (i) the underlying idealized permutations, (ii)
Ek or its counterpart $, and possibly (iii) Dg. The key K is randomly drawn from
{0, 1} at the beginning of the security experiment. The security definitions below follow
[11,37,51,77,80].

Privacy

Let p denote a list of idealized permutations, which IT may depend on. We define the
advantage of an adversary A in breaking the privacy of IT as follows:
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AdvP™ (A) = ‘Prp, X (Al’ifK - 1) —Pryg (Al’i»$ - 1)

9

where the probabilities are taken over the random choices of p, $, K, and A, if any. The
fact that the adversary has access to both the forward and inverse permutations in p is

denoted by p*. We assume that adversary A is nonce-respecting, which means that it

never makes two queries to Eg or $ with the same nonce. By Adv%:V Gp.qe, re) we

denote the maximum advantage taken over all adversaries that query p~ at most g, times,
and that make at most g¢ queries of total length (over all queries) at most ¢ blocks to g
or $. We remark that this privacy notion is also known as the indistinguishability under
chosen plaintext attack (IND-CPA) security of an (authenticated) encryption scheme.

Integrity

As above, let p denote the list of underlying idealized permutations of /7. We define the
advantage of an adversary A in breaking the integrity of /T as follows:

Adv¥N(A) = Prp (Api’g’f "Dk forges) ,

where the probability is taken over the random choices of p, K, and A, if any. We say
that “A forges” if Dk ever returns a message other than L on input of (N; H,C, T; A)
where (C, A) has never been output by £ on input of a query (N; H, M, T') for some
M. We assume that adversary A is nonce-respecting, which means that it never makes
two queries to Eg with the same nonce. Nevertheless, A4 is allowed to repeat nonces in
decryption queries. By AdV*};“h qp. g¢, e, qp, Ap) we denote the maximum advantage
taken over all adversaries that query p* at most qp times, make at most g¢ queries of
total length (over all queries) at most Ag blocks to g, and at most gp queries of total

length at most Ap blocks to Dk .

3. Multi-Collisions

Consider the following game of balls and bins. Let R > 1 be the number of bins and
o the number of balls. The o balls are thrown uniformly at random into the R bins. By
multcol(R, o, p) we denote a p-collision, namely the event that there exists a bin that
contains p or more balls after all o balls are thrown.

A folklore result [67, Theorem 3.1], [64, Lemma 5.1] states the following upper bound
on the probability of a p-collision for p > 2:

1 (o
Pr (multcol(R, 0, p)) = - (p) : (1)

where R > 1 and o0 > p. Note that o can be smaller or larger than R.

The bound of (1) involves a binomial coefficient and hence factorials. To evaluate
these factorials we rely on Stirling’s approximation. Formally, Stirling’s approximation
can be written as an inequality as [71]
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x! > V27x (—) > ﬁ(—) : )
e e

where 1 = 3.14...and e = 2.71 ..., which holds for all x > 1.

For the purpose of the paper we combine inequalities (1) and (2) in the following way.
Let S be some positive number limiting the maximum value of o, i.e., 0 < S. From (1)
and (2), we get

IA

Pr (multcol(R Lol _(S\e 3
r (Multcol(R, o, p)) ®=1 o =\ & ol 3)

s\*~! o eS\’ R o
(2) ——=(=) =% @

R)  Jo(pley ~\pR) JpS
This derivation is identical to that in [67, Theorem 3.1], [64, Lemma 5.1], be it with a
slightly more accurate bound for x!. In the remainder of the section, we will introduce the

Lambert W function in Sect. 3.1, and derive simplified bounds on Pr (multcol(R, o, p))
in Sect. 3.2.

Remark 1. The probability that multcol(R, o, p) occurs can also be bounded using the
Chernoff bound [28]. Consider any fixed bin, and fori =1, ..., o, denote

) 1 with probability 1/R,
| 0 with probability 1 — 1/R.

Defining X = Y "7_, X; as the number of balls in that specific bin, the Chernoff bound
states that for any ¢ > 0 [64, Section 4.2],

Ex (!X
Pr(X >=p) <Pr (e”‘ > e“’) < %
e

As in our case the events X; are mutually independent,

o t o
—1
Ex(e’X) =HEx(etxi) = <1+e R ) .
i=1

One therefore finds, for any > 0,

t_l o
(+%)

Pr (multcol(R, 0, p)) < R - -
elp

®)

Looking ahead, in our applications we will need an upper bound of this term of the form
o/S, where p is a function of R and S. The bound of (4) is more suited for that.
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Likewise, specific variants of (5) such as

6‘5 o/R
Pr (multcol(R, o, (1 +8)o/R)) <R - <W> ’

obtained from (5) by setting p = (1 +8)o/R and t = In(1 + §) [67, Theorem 4.1], [64,
Theorem 4.4], do not directly seem to give an improved result for our specific parameter
setting.

An alternative approach to bound the probability that multcol(R, o, p) occurs, is via
the first and second moments, as done by Raab and Steger [74]. In detail, Raab and Steger
demonstrate that Pr (multcol(R, o, p(R, 0))) = o(1) for various parameter settings and
choices of p as a function of R and o [74, Theorem 1]. This approach, as well as the
related approaches in the field of cryptography [10,49], again does not fit our targeted
upper bound.

3.1. Lambert W Function

Stirling’s approximation contains a “self-exponential” function x*, and we will need to
solve equations of the form

£ =d (6)

for variable &. For this purpose we utilize the Lambert W function [71]. Consider the
function f(w) = we" defined for complex numbers w. Then, the Lambert W function
is the inverse relation of f. More precisely, Z = W (Z)e" (9 is the defining equation
for W, and Eq. (6) can be solved, using W, as

g=e"D), (7)

where D := Ind [30].

In this work, we can restrict the domain of W to real numbers X > —1/e and the
range to real numbers W(X) > —1, and we focus on the principal branch W), which is
a single-valued function. Hoornar and Hassani [50] derived the following inequality on
Wp(X) forany X > e:

Wo(X) <InX —Inln X +1In(l +e7").
Back to (6), when & is restricted to real numbers, the solution (7) becomes

—1
£= WD < N D=Inln Din(l+e~") _ a ﬁne[) )D. ®)

It should be emphasized that this bound is valid only under the condition D > e, or
equivalently, d > e°.
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3.2. Bounding Multi-Collision Probability

We will derive Sponge-oriented bounds for p. In more detail, consider parameters b, r, ¢
such that b = r + ¢, write R = 2", and § = min{2%/2, 2¢}. We will derive choices for p
(depending on r and c), such that the probability of a multi-collision of (1) is bounded
by o/S.

Lemmal. Writeb =r +c¢, R = 2", and S = min{2%/2,2¢}. Assume that ¢ > 13.
Then,

o
Pr (multcol(R, o, p(r, ¢))) < 5
where
p(r,c)
62(0_’)/2-‘ if r <c/5 (case (i),
3.4.2(c=n)/2 if ¢/5 <r <c—2log,c (case (ii)),
8.0.2(c—n)/2 if c—2logyc <r <c—2logyc+7.2 (case (iii)),
i 0.7(5r —
_ TonGr _(:’) +i)_ — 8-‘ if c=2logyc+7.2 <r <c(case(iv)),
B 1.4
_m—‘ if c<r <c+elogyc—epf(case(v)),
r if c+elogyc—ef <r <2c(case(vi)),
r—c
2 if 2c <r (case (vii)),

where B = log, e 4 log, log, e.

The proof of Lemma 1 is constructive, and the bounds for p are derived constructively
rather than simply proven to hold. However, the reasoning is structurally different for
the cases where r < ¢ (cases (i-iv)) and for the cases where r > ¢ (cases (v-vii)).

Proof of Lemma 1(i-iv). For the case r < ¢, our basic strategy is to bound
Pr (multcol(R, o, p)) by o/S, where S = 28/2, by means of setting

p 1= 6201/

for sufficiently large parameter 6. Note that, by the generalized pigeonhole principle,
2(¢=7)/2 ig the minimum value of p when o reaches § = 2°/2.
Assume that p > ¢S/R = eZb/2/2’ = 2(/2 je. 6 > e. Then, (4) becomes
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eS\’ R o e2b/2 g2 2r o
Pr (multcol(R, o, <= —=—<(——— = -
( (Roopn = <pR> N (92(0—”/22’) Vo212 S

€))

(6)92(174)/2 2(5r—c)/4 o

i) s

and we start from this equation for the cases (i-iv).

Case (i): r < ¢/5. Since r < ¢/5, we have 206r=0)/4 < 1, Therefore, the bound of
(9) satisfies

e 0262 aGr—c)/4 e 0262 e 622

G —ms=G) %5=0) (10

o
3
‘We can choose the minimum 6 := e = 2.71 ... so that (6/9)82“4)/2 =1,

which implies that (10) is upper bounded by /S, as desired. The size of a
multi-collision is bounded by

o= ’762(07”/2—‘ )

Case (ii): ¢/5 < r < ¢ — 2log,c. If r > ¢/5, then the factor 20" ~9/4 in the bound
(9) becomes larger than 1, and we need to somehow cancel this factor by
increasing the value of 6. The factor /6 is too small for this purpose,

and hence we aim at the factor (e /9)92(H)/2. The following observation
suggests that we need to increase the value of 6 by only a small amount, as
long as r < ¢ —2log, c:

O
Claim. Ifr < c — 2log, c, then we have 2¢~"/2 > (5r — ¢)/4.
Proof of claim.  Direct computation yields 2(¢=)/2 > 2lo22¢ — ¢ > (57 — ¢) /4. a

Hence, it remains to ensure that (6/9)9 < 1/2. For this we set & := 3.4, so that
(e/6)! = (2.71.../3.4)3* = 0.46... < 1/2. Then, the bound of (9) satisfies

(6>92(H)/2 2(5r=0)/4 & _(! 2D S (5r—0)/4 _o
9 N A J34 5SS

by the above claim. The size of a multi-collision is bounded by
o= {3.4 : 2<H>/ﬂ .

Case (iii): ¢ — 2logyc < r < ¢ — 2log,c + 7.2. This is a technical case to bridge a
gap between case (ii) and case (iv). The reason behind the constant 7.2 will
become clear in the analysis of case (iv).
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Setd :=r —c+2log,c,sothat§ € (0, 7.2]. Then we have 2(c=r)/2 — plogye—d/2
278/2¢ > 278/2(5r — ¢) /4. Hence, the bound of (9) satisfies

(6 )92(64)/2 2(5r=c)/4 (e )9275/2(5rfc)/4 2(5r=c)/4

— P < -
0 Vo ST\ Vo s
N R (Sr—c)/4 1 o

6 s

0 Jo S

and we want to ensure that (e/t9)9275/2 < 1/2. Given the previous constant 3.4 and
the new factor 27%2, let us put 0 := 3.4 - 20179 and define ¢(¢) = (e/(3.4 .

~0.17¢~—2 /2 ~—0.33¢
20.174))3'42 2 = (e/(3_4 . 20.17{))3'42
¢ € [0, 7.2]. It remains to show the following:

that is defined for real numbers

Claim. We have ¢(¢) <0.495 < 1/2.

Proof of claim. The derivative of ¢ is computed as

3.4-2_0'335
0'(¢) =3.4-270%¢ 2 (34%) (0.331n3.4-2™17) —0.5),

and equation ¢’(¢) = 0 has a unique solution ¢y := 10g2(60'5/0'33/3.4)/0.17 =
2.47.... Direct computation shows that the second-order derivative ¢’ () is posi-
tive for ¢ € [0, 7.2], implying that ¢(¢) is minimum at {y. We already know that
00) = (e/3.4)* = 046--- < 1/2, and so we end the proof by computing

3.4_27033-7‘2

9(1.2) = (e/(3.4 - 20177:2)) =0.495 ...<1/2. O

The value of 6 grows as § increases, from 3.4 to 3.4 - 201772 — 794 .. < 8.0.

Case (iv): c—2log,c+7.2 < r < c. The value of 8 needs to increase as r approaches to
¢, and in general 6 cannot be bounded by a constant but is rather a function
of r and c. The Lambert W function can handle such a case, yielding a
fairly sharp bound.

Put ¢(¢) := (e/{)42(64)/22(5’_’3)/4, defined for real numbers { > e. Then ¢(¢) is
strictly decreasing. This leads us to solve equation ¢(¢) = 1 to determine the value
of 6, as a function of r and c. Let ¢y be a solution of this equation. Then the equality

0(Z0) = 1 becomes (¢o/e)502™""* = 267=/4 which is equivalent to

g

e

We can solve Eq. (11) for {y using formula (7) by the Lambert W function, via setting
£ = o/e and d = 2057=)/4e2 T g
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S _ (12)
e

where E = [n207—0/4e2™2 _ (5, )/ (427" log, e). Now we want to use
inequality (8) for the function W), to upper bound ¢y, but for that purpose we need to
make sure that E > e. It is exactly for this reason that we have chosen the constant 7.2,
as shown by the following claim.

Claim. Let ¢ > 13. The inequality
E=>275>¢ (13)

holds for all r € [c — 21log, ¢ + 7.2, c]. (The condition ¢ > 13 is to make the range of
r non-empty.)

Proof of claim.  'We have

B 5r—c _ Se—2logyc+72) —c _ 226(2¢ — 5log, ¢ + 18)
422 logye T 4e2l02ac300ogy e eclog, e

)

which leads us to study the function ¥ (w) := 2>%Qw — Slogy, w + 18)/ewlog, e
defined for real numbers w > 13. We compute the derivative of ¥ (w) as ¥/ (w) =
226(51og, w+ 18 —51og, e)/ew? log, e, and equation ¥’ (w) = 0 has a unique solution
wo = 2'85¢ =32.9. .., at which ¥ (wp) = 2.75. ... Since the second-order derivative
U (w) = 22%(—=10logy w + 36 + 15log, e)/ew’ log, e is positive for 13 < o <
218/53/2 = 543 ..., we conclude that ¥ (w) > 2.75 for all @ > 13, and hence E >
2775 > eforallc > 13 andr € [c —logy c + 7.2, c], as desired. O

Now we can apply inequality (8) to our case (12) to get

_a+ e HE  (1+e H(5r—c)/(2e27/2)
e InE 210g2(5r—c)—|—r—c—4 28"

We compute (1 +e¢71)/2=0.68...and —4 — 28 = —7.94 .. .. Set

0 :=0.7(5r — )22 /(21ogy (51 — ¢) + 71 — ¢ — 8)
so that & > ¢p and @(0) < 1 (recall that ¢(¢) is strictly decreasing). In addition,
since E > e from condition (13), we have 6/e > o/e = ¢"F) > ¢ meaning

0 > ¢2 = 7.38. ... Therefore, the bound of (9) satisfies

e g2(c—r)/2 2(5r—c)/4 (p(e) o 1

(5) NN T%%
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We thus obtain

o= [92(6_,)/2-| _ 0.7(5r —¢)
2log,(5r —¢)+r—c—8 |’

O

Proof of Lemma 1(v-vii). The analysis is different from the cases (i-iv) in the sense that
we do not need to rely on the factor ,/p in Stirling’s approximation, and the Lambert W
function is more easily applicable.

Case (v): ¢ <r < c+elog,c—ef. Consider bound (4). We have R = 2" and § = 2¢,
and hence,

Pr (multcol(R ) < eS\* R o e2°\" 2" o e \P 2 o
r o <|—) —== o _ o
' oR) JpS \p2") Jp S \p2'=¢) oS

Put ¢(¢) := (e/¢2"~¢)52" that is defined for real numbers ¢ > 2. We see
that ¢(¢) is strictly decreasing, and at ¢ = 2 we have ¢(2) = (¢/2)?2% "
which is greater than 1 because 2¢ > r. So we would like to solve equa-
tion ¢(¢) = 1. Let ¢y be a solution of this equation. This means that
(202" ~¢/e)%0 = 2", which is equivalent to

gr—c 502" /e e
<§0 > _ 2 e (14)
e

To apply (7) to solve (14), set § = ¢p2" ~“/eand d = 2r27“/e We obtain

2" _ WG
e 9

where G := In2"2"/¢ = 2" ¢(In2)/e. Asr > ¢ > 13 > 11, we have
G>11-(In2)/e =2.80... > e. Using (8),

027 _ wye) - (L+eHG _ (+e hr2r=c/e
e - InG logor+r—c—p

)

where B = log, e +1log, log, e = 1.97 ... .. Since (1 +e7!) = 1.36..., we

can set
<p: 1.4r (15)
0=p logyr+r—c—2|

Case (vi): ¢ + elog,c — ef < r < 2c. Technically, the bound of case (v) is valid only
for r < 2c. To obtain bounds for r > 2¢ we perform a different kind of
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analysis. We do not start with (4) but go back further to (3), and consider a

simplified bound
;
p = ’7 —‘ . (16)
r—c

The intuition behind (16) is as follows. The “folklore” approach to obtain-
ing a p-collision on r-bit values takes about 2(°~D"/# trials. Suzuki et
al. showed that even under this amount of trials, the probability of finding
a p-collision is actually quite low, about 1/p! [91,92]. Inspired by this,
we consider equation 2¢ = 2(P=1"/P_Solving this equation for variable p
yields p = r/(r — ¢), as desired.

As we will show, the bound (16) “works” not only for » > 2¢ but for all r > c.
Moreover, it turns out that (16) is actually better than (15) for a large part of r € (¢, 2c],
except where r = c. (]

Claim. Letr > c. For p of (16), we have Pr (multcol(R, o, p)) < o/S.

Proof of claim.  We go back to (3). Set R = 2" and § = 2°. We have

S '0_1(7 ¢ rr/(r—CH—lU
Pr (multcol(R, o, p)) < | = - ol

as desired.

2r

1 r/(r—c)—1 o
or—c E

1 c/(r—c) o 1
2r—c o <?

R p!

IA

O

Claim. Letr > ¢ > 11.Then, (16) is better (smaller) than (15) if » > c+elog, r —ep.

Proof of claim. Define the function

1+ eil)u u
Ac(”) = -
u—c+logpu—-p u-c
whose domain is the real numbers u € (c, 2c] with ¢ > 11 and § = log, e +

log, log, e = 1.97.... Then equation A.(#) = 0 becomes u = c + elog, u — ef,
whose solution we denote by uy. We differentiate A, with respect to u as

A,  (1+e M) (—c+logyu— B —loge) c
ou (u —c+logyu— B)? (u —c)?’
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and at u = uy we have

0A, . uog —elog, e
O y—yy  (1+ g — c)?

using ug = ¢ + elog,ugp — ef. We see that ug > elog,e = 3.92... because
r>c>11. O

Note that ¢ 4 elog, r — e > ¢ + elog, c — ¢f8, making the distinction between this
case (vi) and the previous case (v) clear.

Case (vii): 2¢ < r. In this case, we can use the reasoning of case (vi), with p = 2 by
(16). O

4. NORX

We introduce NORX at a level required for the understanding of the security proof and
refer to Aumasson et al. [7,8] for the formal specification. Let p be a permutation on
b bits. All b-bit state values are split into an outer part of r bits and an inner part of ¢
bits. We denote the key size of NORX by « bits, the nonce size by v bits, and the tag
size by t bits. The header, message, and trailer can be of arbitrary length and are padded
using 10*1-padding to a length of a multiple of r bits. Throughout, we denote the r-bit
header blocks by Hi, ..., H,, message blocks by My, ..., M,, ciphertext blocks by
Ci, ..., Cy, and trailer blocks by T1, ..., Ty,.

Unlike other permutation-based schemes, NORX allows for parallelism in the encryp-
tion part, which is described using a parameter D € {0, ..., 255} corresponding to the
number of parallel chains. Specifically, if D € {l1,...,255} NORX has D parallel
chains, and if D = 0 it has v parallel chains, where v is the block length of M or C.

NORX consists of five proposed parameter configurations: NORX W-R-D for
(W, R, D) € {(64,4,1),(32,4,1), (64,6, 1), (32,6, 1), (64,4, 4)}. The parameter R
denotes the number of rounds of the underlying permutation p, and W denotes the word
size which we use to set ¥ = 10W and ¢ = 6W. The default key and tag size are
k = v = 4W. The corresponding parameters for the two different choices of W, 64 and
32, are given in Table 1.

Although NORX starts with an initialization function init which requires the parame-
ters (D, R, T) as input, as soon as our security experiment starts, we consider (D, R, 7)
fixed and constant. Hence, we can view init as a function that maps (K, N) to
(K ||N|0°=%~v) @ const, where const is irrelevant to the mode security analysis of
NORX, and will be ignored in the remaining analysis.

Afterinit is called, the header H is compressed into the rate, then the state is branched
into D states (if necessary), the message blocks are encrypted in a streaming way, the
D states are merged into one state (if necessary), the trailer is compressed, and finally
the tag A is computed. All rounds are preceded with a domain separation constant
XORed into the capacity: 01 for header compression, 02 for message encryption, 04
for trailer compression, and 08 for tag generation. If D # 1, domain separators 10 and
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20 are used for branching and merging, along with pairwise distinct lane indices idj for
k=1,...,D (Gf D =1 we write id; = 0). In Fig. 2 we depict NORX for D = 1 and
D =2.
The privacy of NORXis proven in Sect. 4.1 and the integrity in Sect. 4.2. In both proofs
we consider an adversary that makes g, permutation queries and g¢ encryption queries
of total length Ag. In the proof of integrity, the adversary can additionally make gp
decryption queries of total length Ap. To aid the analysis, we compute the number of
permutation calls made via the g¢ encryption queries. The exact same computation holds
for decryption queries with the parameters defined analogously.

Consider a query to £k, consisting of u header blocks, v message blocks, and w trailer
blocks. We denote its corresponding state values by

M M
Sl,()’ ey SLUI
st bt sH : : Dsg, o shsRe (17)
M M
5D.0c > SDoup
as outlined in Fig. 2. Here, Z,f):] v = v. If there are no branching and merging
phases, i.e., D = 1, then the state values corresponding to the branching and merg-
ing, {s{"’o, sy S g o} and sOT , are left out of the tuple. Note that the length of this tuple

equals the number of primitive calls made in this encryption query, as every state value
corresponds to the input of exactly one primitive call. A simple calculation shows that
if the jthEk query is of length u + v + w blocks, it results in # + v + w + 3 state values
ifD=1,inu+ v+ w-+ D+ 4 state values if D > 1, and in u + 2v + w + 4 state
values if D = 0.* We denote the number of state values by og, j, where the dependence
on D is suppressed as D does not change during the security game. In other words, o¢ ;
denotes the number of primitive calls in the jth query to £k . Furthermore, we define o¢
to be the total number of primitive evaluations via the encryption queries, and find that

qe 2Ae +4qs,if D=0,
og =Y o0g; < {he+3qe.if D=1, (18)
j=1 rs+ (D +4dge,ift D > 1.

This bound is rather tight. Particularly, for D = 0 an adversary can meet this bound by
only making queries without header and trailer. For queries to Dk we define op_; and
op analogously.

4For D = 0, the original specification dictates an additional 10b-2 1-padding for every complete message
block. This means that lanes 1, ..., v — 1 consist of two rounds. We do not take this padding into account,
noting that it is unnecessary for the security analysis.
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4.1. Privacy of NORX

Theorem 1. Let [T = (£, D) be NORXbased on an ideal underlying primitive p.
Then,

3(qp + 0¢)* n og 2pqp L I toe
2b+1 min{zb/Z’ 2¢) 2c 2K ?

AdV (qp. e he) <

where og is defined in (18), and where p = p(r, c) is the function defined in Lemma 1.

Theorem 1 can be interpreted as implying that NORX provides privacy security as long
as the total complexity g, + o¢ does not exceed min{2?/2, 2¢} and the total number
of primitive queries g, also known as the offline complexity, does not exceed 2¢/p.
The presence of the term p makes the bound a bit unclear; in Table 2 we give the
main implication of this bound for the various possible values of 7 and c¢ as outlined in
Lemma 1. See Table 1 for the security level of the various parameter choices of NORX:
for NORXv1 [7], we are concerned with case (vi), where p = [2.5] = 3 for both
b € {512, 1024}; for NORX v2 [8], we are in case (vii), where p = 2.

The proof is based on the observation that NORX is indistinguishable from a random
scheme as long as there are no collisions among the (direct and indirect) evaluations
of p. Due to uniqueness of the nonce, state values from evaluations of £k collide with
probability approximately 1/2°. Regarding collisions between direct calls to p and
calls via Eg: while these may happen with probability about 1/2€¢, they turn out not to
significantly influence the bound. The latter is demonstrated in part using the principle
of multiplicities [18]: roughly stated, the maximum number of state values with the same
outer part. We use Lemma 1 to bound multiplicities. The formal security proof is more
detailed. Furthermore, we remark that, at the cost of readability and simplicity of the
proof, the bound could be improved by a constant factor.

Proof. Consider any adversary A with access to either (p*, £g) or (p*, $) and whose
goal is to distinguish these two worlds. For brevity, we write

AV (A) = Aa(p*, Ex; phL D). (19)

We start by replacing p* by a random function to simplify analysis. This is done with
a “URP-URF” switch [13], in which we make a transition from p¥ to a primitive f=*
defined as follows (as done by Andreeva et al. [4]).

The primitive f¥ maintains an initially empty list F of query/response tuples (x, y)
where the set of domain and range values are denoted by dom(F) and rng(F), respec-
tively. For a forward query f(x) with x € dom(F), the valuein {y | (x, y) € F} which
occurs lexicographically first is returned. For a new forward query f (x), the response y
is randomly drawn from {0, 1}%, then the tuple (x, y) is added to . The description for
£~ 1 is similar. We let abort denote the event that a new query f(x) results in a value
y where y is already in rg(F), or a new query f~!(y) results in a value x where x is
already in dom(F).
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By applying the triangle inequality, we have

Aa(pE, Ek pE ) < AAfE, Exs £5,9) + AA(pE, Eks £, Ek)
+AA(PE. S fE9). (20)

The two rightmost terms are bounded above by the maximum advantage of any adversary
distinguishing p* and f* in at most qp + o¢ queries. Since p* and f* are identical
until abort, by the Fundamental Lemma of Game Playing [12,13] we have that the two
rightmost terms are in turn bounded by (q"szg)/ 2b < (q pt 0g)?/2PF1 hence

(gp + 0¢)?

> 21

AAPE, Ex; pE$) < AA(fE Exs fE 9 +

We restrict our attention to .4 with oracle access to (f = F ), where F € {£k, $)}.
Without loss of generality, we can assume that the adversary only queries full blocks
and that no padding rules are involved since the padding rules are injective, allowing the
proof to carry over to the case of fractional blocks with 10*1-padding.

We introduce some terminology. Queries to f + are denoted (xi, yi)fori =1,...,qp,
while queries to F are written as elements (N;; H;j, M;, T;; Cj, Aj)forj =1,...,q¢.
If F = &g, the state values are denoted as in (17), subscripted with a j:

M M
$j.000 Sy
init, _H H . . . T T . tag
Si5 Sj0s 8w . : 3 S50 > Sjws Sj . (22)
M M
S D0 SiDwp
If the structure of (22) is irrelevant we refer to the tuple as (sj1,...,s j,crg,j)’ where
we use the convention to list the elements of the matrix column-wise. In this case, we
write parent(s; ) to denote the state value that lead to s; s, with parent(s; ) := @

and parent (sfo) = (sj.""'l’v1 e sj.‘!”D’vD). ‘We remark that the characteristic structure of
NORX, with the D parallel states, only becomes relevant in the two technical lemmas
that will be used at the end of the proof. We point out that s; 1 corresponds to the initial
state value of the evaluation, which requires special attention throughout the remainder
of the proof.

We define two collision events, guess and hit. Let i e {I,...,q,}, J, j €

{(1,....qeh ke(l,...,oe },and K € (1,..., 00 ;):

gueSS(i; 7 k) = x= Sk
hit(j, k; j', k') parent(s; k) # parent(sj 1) A Sjx = Sj/ k'

Event guess(i; j, k) corresponds to a primitive call in an encryption query hitting a
direct primitive query, or vice versa, while hit(j, k; j’, k') corresponds to non-trivial
primitive calls colliding in encryption queries. We write guess = V;, j x guess(i; j, k),
hit = Vv i, j.x hit(j, k; j’, k'), and set event = guess V hit.

The remainder of the proof is divided as follows. In Lemma 2 we prove that ( f = &x)
and (f*, $) are identical until event occurs. In other words, by applying the Fundamental
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Lemma of Game Playing [12,13],

Au(fE Ex: f5.9) <Pr (AfifK sets event) . 23)
Then, in Lemma 3 we bound this term by

qpos +02/2 og L 2pdp | dp +oe
20 min{20/2,2¢) T 2¢ 2%

(24)

og +02/2
where p = p(r, ¢) is the function defined in Lemma 1. Noting that % <
2
(611;2—:—+(T(5'), this completes the proof via equations (19, 21, 23). ]
Lemma 2. The outputs of (f*, Ex) and (f*, $) are identically distributed until event

OCCUrs.

Proof. The outputs of f* are sampled independently and uniformly at random in
(f*,$). This holds in the real world as well, unless a query to f¥ collides with an f*
query made via k. Therefore, until guess occurs, the outputs of f* are distributed
identically in both worlds. Furthermore, f*’s outputs are independent of the distin-
guisher’s query history, hence, assuming all past queries were identically distributed
across worlds, a query to ¥ will not change the fact that both worlds are identically
distributed, until guess occurs.

Let N; be a new nonce used in the F-query (N;; H;, M;, T}), with corresponding
ciphertext and authentication tag (C;, A;). Denote the query’s state values as in (22).
Let u, v, and w denote the number of padded header blocks, padded message blocks,
and padded trailer blocks, respectively.

Consider the jth query. By the definition of $, in the ideal world we have (C;, A ;) <
{0, 1})M/1+7_We will prove that (C;, A;) is identically distributed in the real world,
under the assumption that guess V hit has not yet occurred. Denote the message blocks
of MibyMjiefork=1,...,Dandf=1,..., .

H . H . .
We know that s o 18 new and that f(s i ) does not collide with any other f-query

because otherwise event would have occurred. Since s ;"’k 0= f(s JHM) @id; we conclude
that s?’[k gisnew fork =1,..., D, as, again, event would be set otherwise. Similarly,

S%c, ¢ is new for all £ > 0. The ciphertext blocks Cj ¢ are computed as

Cibt =M ®[f (s DV

As the state value sj.”k ¢ has not been evaluated by f before (neither directly nor

indirectly via an encryption query), f (s ;V’k ¢—1) outputs a uniformly random value from

{0, 1}®, hence C kL & {0, 1}". We remark that similar reasoning shows that a ciphertext
block corresponding to a truncated message block is uniformly randomly drawn as well,
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yet from a smaller set. The fact that A & {0, 1}* follows the same reasoning, using
that s;ag is anew input to f. Thus, A; = [f(s;.ag)]r & {0, 1}°. (I

Looking at the reasoning of the proof of Lemma 2 above, we notice that if event
has not yet occurred, then each state value in an F-query is sampled independently and
uniformly at random. In particular, once the adversary fixes the inputs to an F-query,
each state value in that F'-query is independent of the adversary’s input, and independent
of each other. Furthermore, the inner part of those state values are never released to the
adversary, hence the adversary’s future queries are independent of the inner parts of the
state values. Hence, we have the following result:

Corollary 1. Until event occurs, the state values in an Eg query are distributed inde-
pendently and uniformly from each other and from the adversary’s input to that Eg query.
Furthermore, the inner parts of the state values in all Ex queries are distributed inde-
pendently and uniformly from each other and from all of the adversary’s oracle-inputs,
until event occurs.

2
2 o 2
FE g ) qapoc +og/ £ Pdp
Lemma 3. Pr (A sets event) < > min{252, 26 + e +
qp +og . . . .
BT where p = p(r, c) is the function defined in Lemma 1.
Proof. Consider the adversary interacting with (f*, £x), and let Pr (guess V hit)
denote the probability we aim to bound. Fori € {1, ..., g,}, define
key(i) = [x]" =K,
and key = v; key(i), which corresponds to a primitive query hitting the key. Let
je{l,...,gstandk € {1, ..., O'g,j}, and consider any threshold p > 1, then define
multi(j, k) = [maxae{o,l}r i/ <jil<K<k:

a € {lsj ], [f(sj/,k/)]r}”] = P

Event multi(j, k) is used to bound the number of states that collide in the outer part. Note
that state values s/ 1 are not considered here as they will be covered by key. We define
multi = multi(ge, o¢ 4. ), which is a monotone event. By basic probability theory,

Pr (guess Vv hit) < Pr (guess V hit | =(key v multi)) + Pr (key v multi).  (25)

In the remainder of the proof, we bound these probabilities as follows (a formal expla-
nation of the proof technique is given in “Appendix”): we consider the ith forward or
inverse primitive query (fori € {1, ..., gp}) or the kth state of the jth construction
query (for j € {I,...,qe}and k € {1, ..., 0g ;}), and bound the probability that this
evaluation makes guess V hit satisfied, under the assumption that this query does not
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set key v multi and also that guess V hit v key v multi has not been set before. For the
analysis of Pr (key v multi) a similar technique is employed.

Event guess. This event can be set in the ith primitive query (fori = 1,...,¢,) or
in any state evaluation of the jth construction query (for j = 1, ..., gg). Denote the
state values of the jth construction query as in (22). Consider any evaluation, assume
this query does not set key v multi and assume that guess Vv hit v key v multi has
not been set before. Firstly, note that x; = s}“it for some i, j would imply key(i) and

hence invalidate our assumption. Therefore, we can exclude ™™ from further analysis on
guess.Fori =1,...,¢qp,letj; € {1,..., ge}bethe number of encryption queries made
before the ith primitive query. Similarly, for j =1, ..., g¢, denote by i; € {1, ..., qp}
the number of primitive queries made before the jth encryption query.

— Consider a primitive query (x;, y;) fori € {1, ..., gp}, which may be a forward
or an inverse query, and assume it has not been queried to f* before. If it is a
forward query x;, by =multi there are at most p state values s with [x;]" = [s]",
and thus x; = s with probability at most p/2¢. Here, we remark that the inner part
of s is unknown to the adversary and it guesses it with probability at most 1/2¢,
as established by Corollary 1. A slightly more complicated reasoning applies for
inverse queries. Denote the query by y;. By =multi there are at most p state values
s with [y;]” = [ f(s)]", hence, using Corollary 1 again, y; = f(s) with probability
at most p/2¢. If y; equals f(s) for any of these states, then x; = s, otherwise x; = s
with probability at most ij 108,/ 2%, Therefore, the probability that guess is

set via a direct query is at most 22 + > ’_1 U‘zg,;" ;

— Next, consider the probability that the jth constructlon query sets guess, for j €
{1, ..., gg}. For simplicity, first consider D = 1, hence the message is processed
in one lane and we can use state labeling (s 1, ..., sj,(,&j). We range from s; ; to

Sj.o¢; (recall thats; | = s}n“ can be excluded) and consider the probability that this

state sets guess assuming ithas notbeen setbefore. Letk € {2, ..., o¢ ;}. The state
value s; ; equals f(s; x—1) @ v, where v is some value determined by the adversarial
input prior to the evaluation of f(s; x—1), including input from (H;, M;, T;) and
constants serving as domain separators. By assumption, guess V hit has not been
set before, and f(s; k1) is thus randomly drawn from {0, 1}”. It hits any x; (i €

{1,...,i;}) with probability at most i ; /2P Next, consider the general case D > 1.
We return to the labeling of (22). A complication occurs for the branching states
st -+ 5p o and the merging state s | . Starting with the branching states, these
H
are computed from s Fu as
M
51,0 vl
C o =rethe| ]
M
N 7.D,0 Up
where vy, ..., vp are some distinct values determined by the adversarial input prior

to the evaluation of the jth construction query. These are distinct by the XOR of the
lane numbers idj, ..., idp. Any of these nodes equals x; fori € {1, ..., q,} with
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probability atmosti; D/ 2°. Finally, for the merging node szO we can apply the same
analysis, noting that it is derived from a sum of D new f-evaluations. Concluding,
the jth construction query sets guess with probability at mostijog ;/ 2% (we always
have in total at most o¢ ; new state values). Summing over all g¢ construction
queries, we get 2321 ijos.j/2°.

Concluding,

ap ]z

1;0¢ ;
Pr (guess | —(key v multi)) < 22 4 > Z Z jzlf’] qgcp + q’;‘g.

i=1 j=1 j=1

Here we use that Y_/" | Yilioe i+ 20 S i odijoe j = qpoe, which follows from
a simple counting argument.

Event hit. We again employ ideas of guess, and particularly that as long as guess V hit
is not set, we can consider all new state values (except for the initial states) to be randomly
drawn from a set of size 2°. Particularly, we can refrain from explicitly discussing the
branching and merging nodes (the detailed analysis of guess applies) and label the states
as (sj,1, ..., 8j,0¢ ;). Clearly, sj 1 # s 1 forall j, J' by uniqueness of the nonce. Any
state value s; x for k > 1 (at most og — g¢ in total) hits an initial state value s 1 only if
[s;.x]“ = K, which happens with probability at most o¢ /2*, assuming s;  is generated
randomly. Finally, any two other states s; t, s 7 ¢ for k, k" > 1 collide with probability
at most (7¢39¢) /2", Concluding, Pr (hit | ~(key v multi)) < (%)/2> + og /2.
Eventkey.Fori € {1, ..., g,}, the query sets key (i) if [x;]“ = K, which happens with
probability 1/2 (assuming it did not happen in queries 1, ...,i — 1). The adversary
makes ¢, attempts, and hence Pr (key) < g,/2“.

Event multi. Event multi can be related to multcol of Sect. 3, in the following way.
Consider any new state value s x_1; then it contributes to the bin o if [ f(sj r—1)]" = @
or [sjx]" = [f(sjx—1) ®v]" = a. If a threshold p needs to be exceeded for some «,
at least p /2 of them are either of the first kind or of the second kind. The event multi
can henceforth be seen as a balls and bins game with 2" bins, o¢ balls, and threshold

P =p/2
Pr (multi) < Pr (multcol(2”, o¢, p")) .

By Lemma 1, we know that Pr (multcol(Z’ og, p )) < mm{ZTZ‘ where p’ is the

function described in Lemma 1 (parameters r, ¢ are implicit). Note that we put p = 2p’.
Addition of the four bounds via (25) gives

2 l
og+o0 2 0, 20 + o
qp g/ £ dp dp 8‘

Pr (guess V hit) <
r )= 2 min{2b72,2¢) T 2¢ 2%

where p’ = p(r, ¢) is the function defined in Lemma 1. |



Beyond Conventional Security in Sponge-Based Authenticated... 921

4.2. Authenticity of NORX

Theorem 2. Let IT = (£, D) be NORX based on an ideal underlying primitive p.
Then,

(qp + 05 + op)? N og L 204y
2b min{26/2,2¢} " 2c
qp tos+op (qp+og+op)op  gp
+ o + e + 2_r

Adv?_l[nh(qp’ qgv )\'87 qD7 )\'ID) S

s

where og, op are defined in (18), and where p = p(r, c) is the function defined in
Lemma 1.

The bound is more complex than the one of Theorem 1, but intuitively implies that
NORX offers integrity as long as it offers privacy and the number of forgery attempts
op is limited, where the total complexity g, + o¢ + op should not exceed 2¢/op. See
Table 1 for the security level for the various parameter choices of NORX. Needless to
say, the exact bound is more fine-grained.

Proof.  We consider any adversary A that has access to (p~, £k, Dk ) and attempts to
make Dg output a non-_L value. As in the proof of Theorem 1, we apply a URP-URF
switch to find

Advi¥h(4) = Pr (Api*g"’p’( forges) <Pr (Af *.&x. Dk forgeS)

(gp +0c +0p)°
I’T (26)
Then we focus on .4 having oracle access to (f £ €k, D). As before, we assume
without loss of generality that the adversary only makes full-block queries.

We inherit terminology from Theorem 1. The state values corresponding to encryption
and decryption queries will both be labeled (j, k), where j indicates the query and k the
state value within the jth query. If needed we will add another parameter § € {D, £}
to indicate that a state value ss_j« is in the jth query to oracle §, for § € {D, £} and
j €{l,...,qgs}. Particularly, this means we will either label the state values as in (22)
with a § appended to the subscript, or simply as (s5,j.1, ..., Ss, jyg&j).

As before, we employ the collision events guess and hit, but expanded to the new
notation with § = &. Next, we define two D-related collision events Dguess and
Dhit. Leti € {1,...,q,}, (D, j, k) be a decryption query index, and (&', j’, k) be an
encryption or decryption query index:

Dguess(i; j,k) = xi =spjk,
Dhit(j, k; &', j', k') = parent(sp,j x) # parent(sy, ji k') ASD.jk = 57"k

We write Dguess = V;. ; yDguess(i; j, k) and Dhit = v 1.5 7 ¢ Dhit(j, k; &', j', k'),
and define event = guess V hit v Dguess Vv Dhit.
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Observe that from (26) we get

Pr (Af *.Ex Dk forges) <Pr (.Af *.&x Dk forges | —-event)

4 Pr (Af €k DK gers event) . @7

A bound on the probability that A sets event is derived in Lemma 4.
The remainder of this proof centers on the probability that A forges given that event

does not happen. Such a forgery requires that [ f (s%gj)]t = A; for some decryption

query j. By —event, we know that sggj is a new state value for all j € {1,...,¢gp},

hence f’s output under sgg. is independent of all other values and uniformly distributed
for all j. As aresult, we know that the jth forgery attempt is successful with probability
at most 1/2%. Summing over all gp queries, we get

Pr (Afi’g’('p’( forges | —-event) < q—D,
21’

and the proof is completed via (26, 27) and the bound of Lemma 4, where we again use
9p0s +02/2 _ (gp +0e +o0p)

2b — 2b+1 0

that

qpoc + 02/2 og 204,
2b min{20/2, 2¢} 2¢

Lemmad4. Pr (.Af ©.Ek.DK gets event) < +

qp +og+op N (qp + 08)op + 03/2

2K 2¢
Lemma 1.

, where p = p(r, c) is the function defined in

Proof. Recall that event = guess Vv hit v Dguess v Dhit. Employing events key and
multi from Lemma 3, we find:

Pr (guess Vv hit v Dguess Vv Dhit)
< Pr (guess V hit v Dguess Vv Dhit | —~(key v multi))
+ Pr (key v multi) . (28)

The proof builds upon Lemma 3, and in particular we will use the same proof technique of
running over all queries and computing the probability that a query sets event, assuming
event has not been set before. The bounds on Pr (guess Vv hit | —(key v multi)) and
Pr (key v multi) carry over from Lemma 3 verbatim, where we additionally note that
for a given query, the previous decryption queries are of no influence as by hypothesis
Dguess Vv Dhit was not set before the query in question. We continue with the analysis
of Dguess and Dhit.

Event Dguess. Note that the adversary may freely choose the outer part in decryption
queries and primitive queries. Indeed, the ciphertext values that A chooses in decryption
queries define the outer parts of the state values. Consequently, Dguess gets set as
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soon as there is a primitive state and a decryption state whose capacities are equal. This
happens with probability at most Pr (Dguess | —(key v multi)) < g,0p/2¢.

Event Dhit. A technicality occurs in that the adversary can reuse nonces in decryption.
To increase readability, we first state that any decryption state s satisfies [s]“ = K only
with probability at most op /2%, and in the remainder we can exclude this case. Next, we
define an event innerhit. Let (8, j, k) and (8, j/, k') be two decryption query indices,
and letconst € {0,016 02,0164 04,014 08,014 10,0264 04,0264 08,026
20,02@20&1id;, 04 ® 08}:

innerhit(s, j, k; &, j’, k'; const) = parent(ss, jx) # parent(ss j x) A
[ss,j.kle = [ss,j .k ]c © const.

Note that for any choice of indices and const, we have Pr(innerhit(s, j, k; &', j/, k';
const)) < 1/2¢.

We consider the general case D # 1. Consider the jth decryption query
(N; H,C,T; A). Say it consists of u header blocks H; ... H,, v ciphertext blocks
Ci...Cy, and w trailer blocks Tj ... Ty, and write its state values as in (17). Let
(Ns,j; Hs j, Cs.j, Ts, j; As, j) be an older ciphertext tuple that shares the longest com-
mon blockwise prefix with (N; H, C, T'; A). Note that this tuple may not be unique (for
instance if N is new), and that it may come from an encryption or decryption query. Say
that this query consists of us ; header blocks, vs,; ciphertext blocks, and ws, ; trailer
blocks, and write its state values as in (22). We proceed with a case distinction.

() (N;H,C,T) = (Nsj;Hsj,Csj, Tsj)but A # Ag ;. Inthis case the query renders
no new states and Dhit cannot be set by definition;
(2) (N;H,C) = (Nsj; Hsj,Csj) but T # Tsj. Let € € {1,..., min{w, ws,;}, 00}
be minimal such that 7; # T ; ¢, where £ = oo means that T is a substring of T_;
(if w < ws, ;) or vice versa (if w > ws, ;). We make a further distinction between
{ =o00and ¢ < c0.
(a) £ = oco. Note that smm{w ws) = ({j’min{w’w&j} @ 04 @ 08. If this input to
f is old, it implies Innerhlt(cS Jsmin{w, ws ;}; &, j’, k'; 04 @ 08) for some
(8", j', k') older than the current query (D, j, min{w, ws_;}), which is the case
with probability at most 1/2¢ (for all possible index tuples). Otherwise, f
generates a new value and new state value s (s, if w > ws j or s"¢ if
w < ws, j), which sets Dhit if it sets innerhit with an older state sy ;7 r» under
const = 0. This also happens with probability at most 1,/2¢ for any (&', j/, k’).

This procedure propagates to s, In total, the jth decryptlon query sets Dhit
0p.; og+op 1+Fop i +k—
with probability at most Y, J S
(b) £ < oo. InthlscasesZ L =s! = ands] =s] . ZGB(TgIIO‘)GB(Ta j.e110°) #

SB’M. As before, sz isanew input to f, exceptifinnerhit(s, j, ¢; &, j/, k’; 0)

for some (8, j’, k') older than the current query (D, j, £). This is the case

5 : ; ; A T _ T T _ T
Note that if (§, j) were not unique, then we similarly have Se—1 = Sy i g1 and s, = sé’,j’.e ®

5]
(Ty110%) ® (T(;/’j/’z 109) # s(g.j,,e for all other queries (8’, j’) with the same prefix (possibly XORed with

04 & 08).
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with probability at most 1/2¢ for all possible older queries. The procedure
propagates to s' as before, and the same bound holds;

(3) (N; H) = (Nsj; Hs j) but C # Cj ;. The analysis is similar but a special treatment
is required to deal with the merging phase. Consider the ciphertext C to be divided
into blocks Cr ¢ for k = 1,...,D and £ = 1,..., v. Similarly for Cs ;. For
k=1,...,D,let{; € {1,..., min{vg, vs j«}, 00} be minimal such that Cy ¢, #
Cs,j k0, Again, £; = oo means that Cy is a substring of Cs j x Gf v < vs,j ) or
vice versa (if vy > vs,j x). We make a further distinction between whether or not
#1,...,¢p) = (00,...,00).

(@ ({1,...,8p) = (00,...,00). As C # Cs,;, there must be a k such that
vk # vs,jx and thus that Cy is a strictly smaller substring of Cj_ j x or vice
versa. Consequently, slgvk = S(SC:j,k,vk @ 02 @ 20 @ idi[minfvg, vs i} = 1]
(or @ 02 @ 04 if D = 1 and there is no merging phase, or @ 02 @ 08
if there is furthermore no trailer). Then, this state is new to f except if
innerhit(s, j, k, v; &', j', k’; const) is set for the const described above. (We
slightly misuse notation here in that v is input to innerhit.) This means that
also SOT will be new except if it hits a certain older state, which happens with
probability 1/2¢. The reasoning propagates up to s™€ as before, and the same
bound holds;

(b) £1,...,€p) < (00, ...,00). Let k be such that £; < oo. Then, Skc,ek—l =
S(gj,k,zk—l and Skc,zk = Cy g ”[S(gj,k,zk]c 7+ s(gj,uk. The reasoning of case (2b)
carries over for all future state values;

(4) N = Nsjbut H # H; ;. The analysis follows fairly the same principles, albeit
using const € {0,01 ® 02,01 ¢ 04,014 08,01 $ 10};

(5) N # Ns . The nonce N is new (hence the query shares no prefix with any older
query). There has not been an earlier state s that satisfies [s]“ = K (by virtue of
the analysis in hit and key, and the first step of this event Dhit). Therefore, s™! is
new by construction and a simplification of above analysis applies.

Summing over all queries:

qp °D.j - _
_ , ctopi+--topi+ k=1
Pr (Dhit | —(key v multi)) <> > % D.j-1 + (;_1;

]:1 k=1

_oep+(7)  op
T 2%

b

where the last term comes from the exclusion of the event that any decryption state
satisfies [s] = K.
Together with the bound of Lemma 3 we find via (28),

qpos + 02/2 N os L2 dptoctop
2b min{26/2, 2} T 2e 2%
(gp +og)op + 012)/2
+ 2C b

Pr (event) <
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Fig. 3. Target structure in key recovery attack.
where p’ = p(r, ¢) is the function defined in Lemma 1. (Il

5. Tightness of the Bound

We derive a generic attack on Sponge-based authenticated encryption schemes. The
attack exploits multi-collisions on the outer part of the internal state. Using the multi-
collision bounds of Suzuki et al. [91,92], we demonstrate that the attack actually matches
the proven security bound, meaning that the bounds of Sect. 4 are tight. Therefore, we first
describe our simplified target structure in Sect. 5.1. The attack is described in Sect. 5.2
and evaluated in Sect. 5.3.

5.1. Target Structure

We consider the simplified structure of Fig. 3. Without loss of generality, we consider
akey K € {0, 1}, nonce N € {0, 1}’~% (hence v = b — k), and we assume that init
initializes the state as (K, N) — K| N. (The attack can be generalized to the setting
where the key is absorbed in multiple evaluations of p, or where the key is XORed into
the state before outputting A. See also Sect. 5.4.) We consider no associated data, or
in terminology of Sect. 2, we put H, T < Null. The message size must be at least
one complete block. Note that, in many schemes, the message of one complete block
will expand to two blocks by a padding procedure. We consider a general setting where
the t-bit authentication tag A may be generated in multiple extraction rounds (two in
Fig. 3), and we assume that T > ¢. We ignore minor issues irrelevant to our attack, such
as padding, frame bits, domain separation for message processing and tag generation
parts, and truncation of the tag.

As shown in Fig. 3, the b-bit state after the first permutation call is denoted s;. Its
outer and inner part are denoted [s;]” and [s1]., respectively. Then, an r-bit message
block M is XORed into [s1]" and the first ciphertext block C| = [s1]" @ M| is output.
The state is evaluated using the permutation, and the resulting state is s,. Note that the
values M; and C; reveal the outer part of state s; as [s;]" = M; & C;.

5.2. Distinguishing Attacks via Key Recovery

Let p > 2. If 2 < 2°/p a naive key recovery attack can be performed in complexity
2, and we assume that 2 > 2¢/p.
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We first give an overview of the attack. Once a b-bit state in the structure of Fig. 3 is
recovered, the secret key K can be recovered immediately by computing the inverse of
the permutation. Our attack aims to recover the internal state s; after the first permutation
call. It consists of an online phase followed by an offline phase.

In the online phase, the adversary searches for a p-collision on the r-bit value Cj.
It makes a certain amount of encryption oracle queries for different N and possibly
different M. Let ¢ denote the total number of encryption queries needed. The online
phase results in p pairs of (N, M) which produce the same C; but different [s1].. The
adversary also stores the tag A for each pair.

In the offline phase, the adversary recovers an inner part [s1].. Using the value Cj,
the same for all tuples, the value [s]. is exhaustively guessed. In a bit more detail, the
adversary computes the authentication tag A from C1||[s1]. offline, and checks if there
is a match with any stored tag. Because p tags are stored, the attack cost is about 2¢/p.
Once [s1]. is recovered, the adversary can compute p_l ((M1 & CpIls1]e) and recover
K.

The formal description of the attack is given below. Here, we denote the data D for
the kth block in the jth query by D; ;. We omit the second subscript for the data where
the block length is always 1, e.g., nonce N;.

Online Phase
1. Choose ¢ different pairs (Ny, M, 1) fori =1,2,...,q;
2. Query (N;, M; 1) fori =1,2,..., q and receive (C; 1, A; 1|42l ...);
3. Find a p-collision on C. 1;
4. Store p triplets of (N;, M; 1, A1 A2l ..) contributing to the p-collision. We
denote the colliding value of C. ; by C, which is also stored.
Offline Phase

1. Re-define the outer part of the state after the computation of [s. 1]” & M. | by C;
2. Make 2¢/p guesses for [s. 1]¢, denoted by [s; 1]c for j =1,2,...,2p;

3. For each j, generate the tag A; 1]|Aj 2|l ... with the state 5||[sj,1]c;
4

. Check if Aj 1[|Aj2|l ... matches one of the p values A; 1]|A; 2]l ... stored in the
online phase. If so, assume that [s; 1]. is the right value. Let i’ and j’ be matching
indices;

5. Compute p_l((Mi/,l @ f)ll[sjgl]c). If the resulting value matches nonce Nj/,
output the first k bits of the state as the recovered key K.

5.3. Attack Evaluation

In the online phase, the adversary does not strictly need to choose N and M1, a given list of
q different tuples suffices. Thus, the attack is a known plaintext attack. The data complex-
ity is g one-block messages and the memory to store g triples (N;, M; 1, A; 1| Ai2|l -..)
fori = 1,...,q is required. The time complexity of at least ¢ memory access is also
required. Intuitively, all the complexities in the online phase are g.

In the offline phase, because p candidates are stored in the online phase and 2¢/p
guesses are examined, one match is expected. If the internal state values match, the
corresponding tag values also match. Thus, the right guess is identified. Due to the
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Table 3. Comparison of attack complexity and security bound.

Parameters Attack complexity Security bound
o 1.4
p q 2/p /e, @ = g2
c=r =128 18 2123.806 2123.830 2122.837
c=r =256 30 225].057 225].093 2250.100
c=r=512 5] £506.272 1506.327 505.322

assumption that the tag size is at least ¢ bits, the match likely only suggests the right
guess. In addition, we can further filter out the false positive by r bits with the match of N
in the last step. Thus, with a very high probability the key is successfully recovered. For
the complexity, the only important factor is the time complexity of 2¢/p tag generation
functions.

What remains is to appropriately choose parameters for ¢ and p so that the total
complexity max{q, 2¢/p} is minimized. Suzuki et al. [91,92] showed that, when ¢ < r,
the complexity ¢ to find a p-collision with probability about 0.5 is given by

p—1

g=(Yr 27 +p—1. (29)

¢ = r. We demonstrate tightness of the bound for the cases c = r = 128, ¢ = r = 256,
and ¢ = r = 512. Note that, provided « is large enough, the bound of Theorem 1 is
dominated by 2¢/a with @ = logzri% (cf., Table 2). In Table 3 we evaluate the
attack complexity so that max{g, 2" /p} is minimized. This complexity is always bigger
but very close to the proven bound, which shows tightness of security bound.

¢ < r.Itiscommon practice to enlarge the rate of Sponge-based authenticated encryption
so that more data can be processed per permutation call. We demonstrate tightness of
our attack for the case of ¢ = 256 and r € [257, 768]. Figure 1 depicts the evaluated
attack complexity and our security bound for ¢ = 256. For the sake of completeness,
it also includes the 2¢/r bound of the original ASTACRYPT 2014 article [53], which
decreases by approximately a logarithmic factor log, r.

Note that the adversary needs to find a multi-collision on r bits with only 2€ trials.
When the rate increases, and particularly when r > 2c, the adversary cannot even
find an ordinary collision within 2€ trials. In this case, the multi-collision-based attack
will not be influential. Due to this, our bound is getting close to 2¢ when r becomes
large. The advantage of the attack comes from the number of generated multi-collisions.
Considering that the number of multi-collisions can only take discrete values while our
bound can take sequential values, our bound is strictly tight.

¢ > r. Note that, for ¢ > r, the security bound of Theorem 1 is not dominated by 2¢/«
but rather by 2°/2, omitting constants (cf., Table 2). Tightness of the bound follows by
a naive attack that aims to find collisions on the b-bit state.
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5.4. Distinguishing Attacks Without Key Recovery

As later explained in Fig. 4, several practical designs use key K for the initialization as
well as for the tag generation. Those schemes cannot be distinguished with a straight-
forward application of the above generic procedure, yet it is still possible to distinguish
them by increasing the attack complexity only by 1 bit or so.

We focus on Ascon, GIBBON and HANUMAN, in which K in the tag computation
prevents the adversary from computing tag A offline. This can be solved by extending
the number of message blocks in each query. Instead of the tag A; 1||A; 2|| . . ., outer parts
of the subsequent blocks [s; 2] ||[si3]"| . .. take a role of filter to identify the correct
guess. If the number of filtered bits is much bigger than ¢, a match suggests the correct
guess with very high probability. Owing to the additional message blocks, the attack
complexity increases by 1 bit or so, depending how many message blocks are added.

In HANUMAN, K can be recovered from the internal state by inverting the permuta-
tion to the initial value. Meanwhile in Ascon and GIBBON, K cannot be recovered and
the adversary only can mount distinguishing attacks.

6. Other CAESAR Submissions

In this section we discuss how the mode security proof of NORX generalizes to the
CAESAR submissions Ascon, the BLNK mode underlying CBEAM/STRIBOB, ICE-
POLE, Keyak (vl only), and two out of the three PRIMATEs. Before doing so, we
make a number of observations and note how the proof can accommodate small design
differences.

— NORX uses domain separation constants at all rounds, but this is not strictly nec-
essary and other solutions exist. In the privacy and integrity proofs of NORX, and
more specifically at the analysis of state collisions caused by a decryption query
in Lemma 4, the domain separations are only needed at the transitions between
variable-length inputs, such as header to message data or message to trailer data.
This means that the proofs would equally hold if there were simpler transitions at
these positions, such as in Ascon. Alternatively, the domain separation can be done
by using a different primitive, as in GIBBON and HANUMAN, or a slightly more
elaborated padding, as in BLNK, ICEPOLE, and Keyak;

— The extra permutation evaluations at the initialization and finalization of NORX
are not strictly necessary: in the proof we consider the monotone event that no state
collides assuming no earlier state collision occurred. For instance, in the analysis of
Dhit in the proof of Lemma 4, we necessarily have a new input to p at some point,
and consequently all next inputs to p are new (except with some probability);

— NORX starts by initializing the state with init(K, N) = (K||N||0°~“~") & const
for some constant const and then permuting this value. Placing the key and nonce
at different positions of the state does not influence the security analysis. The proof
would also work if, for instance, the header is preceded with K ||N or a properly
padded version thereof and the starting state is 0°;

— In a similar fashion, there is no problem in defining the tag to be a different 7 bits
of the final state; for instance, the rightmost t bits;
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— Key additions into the inner part after the first permutation are harmless for the
mode security proof. Particularly, as long as these are done at fixed positions, these
have the same effect as XORing a domain separation constant.

These five modifications allow one to generalize the proof of NORX to Ascon,
CBEAM and STRIBOB, ICEPOLE, Keyak, and two PRIMATEs, GIBBON and HANU-
MAN. The only major difference lies in the fact none of these designs accommodates a
trailer, hence all are functions of the form

(C,A) «— Ex(N;H,M) and M/L «<— Dg(N;H,C;A),

except for one instance of ICEPOLE which accommodates a secret message number.
Additionally, these designs have o5 < As + g5 for § € {D, £} (or o5 < is + 2gs for
CBEAM/STRIBOB). We always write H = (Hy,..., H,) and M = (My, ..., M,)
whenever notation permits. In below sections we elaborate on these designs separately,
where we slightly deviate from the alphabetical order to suit the presentation. Diagrams
of all modes are given in Fig. 4. The parameters and achieved provable security levels
of the schemes are given in Table 1.

We remark that the attack of Sect. 5 carries over to CBEAM and STRIBOB, ICE-
POLE and a simplified version of Keyak vl (with only one round of key absorption). It
does not apply to Ascon, GIBBON, and HANUMAN due to the additional XOR of the
secret key at the end.

6.1. Ascon

Ascon is a submission by Dobraunig et al. [33,34] and is depicted in Fig. 4a. It is origi-
nally defined based on two permutations p1, p; that differ in the number of underlying
rounds. We discard this difference, considering Ascon with one permutation p.

Ascon initializes its state using init that maps (K, N) to (0°~*~V|| K ||N) @ const,
where const is determined by some design-specific parameters set prior to the security
experiment. The header and message can be of arbitrary length and are padded to length
amultiple of r bits using 10*-padding. An XOR with 1 separates header processing from
message processing. From the above observations, it is clear that the proofs of NORX
directly carry over to Ascon.

6.2. ICEPOLE

ICEPOLE is a submission by Morawiecki et al. [65,66] and is depicted in Fig. 4c. It
is originally defined based on two permutations, p; and pj, that differ in the num-
ber of underlying rounds. We discard this difference, considering ICEPOLE with one
permutation p.

ICEPOLE initializes its state as NORX does, be it with a different constant. The
header and message can be of arbitrary length and are padded as follows. Every block is
first appended with a frame bit: 0 for header blocks Hi, ..., H,_; and message block
M, and 1 for header block H,, and message blocks M1, ..., M,_1. Then, the blocks are
padded to length a multiple of » bits using 10*-padding. In other words, every padded
block of r bits contains at most r — 2 data bits. This form of domain separation using
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Fig.4. CAESAR submission modes discussed in Sect. 6, a Ascon, b BLNK (used in CBEAM and STRIBOB),
¢ ICEPOLE, d Keyakv1, e GIBBON (PRIMATESs) and f HANUMAN (PRIMATE:).

frame bits suffices for the proof to go through. One variant of ICEPOLE also allows for
a secret message number Mecrer, Which consists of one block and is encrypted prior to
the processing of the header, similar to the message. As this secret message number is
of fixed length, no domain separation is required and the proof can easily be adapted.
From above observations, it is clear that the proofs of NORX directly carry over to
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ICEPOLE. Without going into detail, we note that the same analysis can be generalized
to the parallelized mode of ICEPOLE [65,66].

6.3. Keyak

Keyak vl is a submission by Bertoni et al. [22]. The basic mode for the serial case is
depicted in Fig. 4d, yet due to its hybrid character it is slightly more general in nature.
It is built on top of SpongeWrap [19]. We remark that the discussion does not apply to
Keyak v2, which is built on top of the full-state keyed Duplex [31,60].

Keyak initializes its state by 0°, and concatenates K, N, and H using a special padding
rule:

Hpaa(K, N, H) = keypack(K’, 240) || encs(1) | encg(0) | N || H,

where encg(x) is an encoding of x as a byte and keypack(K, ¢) = encg(£/8)| K ||
10—~ 1mod (¢=8) The key-nonce-header combination H.q(K, N, H) and message M
can be of arbitrary length, and are padded as follows: first, every block is appended with
two frame bits, being 00 for header blocks (Hpaa (K, N, H))1, ..., (Hpad(K, N, H)),—1
and 01 for (Hpaa(K, N, H)),, and 11 for message blocks My, ..., M,_ and 10 for
M,,. Then, the blocks are padded to length a multiple of r bits using 10*1-padding. In
other words, every padded block of r bits contains at most » — 2 data bits. This form of
domain separation using frame bits suffices for the proof to go through. Due to above
observations, our proof readily generalizes to SpongeWrap [19] and DuplexWrap [22],
and thus to Keyak. Without going into detail, we note that the same analysis can be
generalized to the parallelized mode of Keyak [22]. Additionally, Keyak also supports
sessions, where the state is re-used for a next evaluation. Our proof generalizes to this
case, simply with a more extended description of (17).

6.4. BLNK (CBEAM and STRIBOB)

CBEAM and STRIBOB are submissions by Saarinen [81,83-86]. Minaud identified an
attack on CBEAM [62], but we focus on the modes of operation. Both modes are based
on the BLNK Sponge mode [82], which is depicted in Fig. 4b.

The BLNK mode initializes its state by 0°, compresses K into the state (using one
or two permutation calls, depending on «), and does the same with N. Then, the mode
is similar to SpongeWrap [19], though using a slightly more involved domain separa-
tion system similar to the one of NORX. Due to above observations, our proof readily
generalizes to BLNK [82], and thus to CBEAM and STRIBOB.

6.5. PRIMATEs: GIBBON and HANUMAN

PRIMATE:S is a submission by Andreeva et al. [2,3], and consists of three algorithms:
APE, GIBBON, and HANUMAN. The APE mode is the more robust one, and signif-
icantly differs from the other two, and from the other CAESAR submissions discussed
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Fig. 5. APE (PRIMATE:S) discussed in Sect. 7.

in this work, in the way that ciphertexts are derived and because the mode is secure
against nonce-misusing adversaries up to common prefix [4]. (See Sect. 7 for a dis-
cussion on APE.) We now focus on GIBBON and HANUMAN, which are depicted in
Fig. 4e, f. GIBBON is based on three related permutations p = (p1, p2, p3), Where
the difference in p, p3 is used as domain separation of the header compression and
message encryption phases (the difference of p; from (p», p3) is irrelevant for the mode
security analysis). Similarly, HANUMAN uses two related permutations p = (p1, p2)
for domain separation.®

GIBBON and HANUMAN initialize their state using init that maps (K, N) to
0°=%~V||K||N. The header and message can be of arbitrary length, and are padded
to length a multiple of r bits using 10*-padding. In case the true header (or message)
happens to be a multiple of r bits long, the 10*-padding is considered to spill over into
the capacity. From above observations, it is clear that the proofs of NORX directly
carry over to GIBBON and HANUMAN. A small difference appears due to the usage
of two different permutations: we need to make two RP-RF switches for each world.

2
gptoe) and the first

Concretely this means that the first term in Theorem 1 becomes —Z5

3(gp+oc+op)?

term in Theorem 2 becomes ST

7. PRIMATEs: APE

Unlike GIBBON and HANUMAN, the APE authenticated encryption scheme follows
a different design strategy. It is depicted in Fig. 5. APE is based on one permutation p,
and characteristic to the design is the way the ciphertexts are derived and verified.
APE uses a key of size ¢ bits, and the initialization init places K into the inner part of
the state. In case of a present nonce N, in APE it is prepended to the header H, denoted
N|| H. The nonce is of fixed length, and of suggested size 2r bits [2,3]. The header and
message can be of arbitrary length and are padded to length a multiple of » bits using
10*-padding. In case the true header (or message) happens to be a multiple of r bits
long, the 10*-padding is considered to spill over into the capacity. In case the message

OVizar [94] pointed out an oversight in the domain separation of an earlier version of HANUMAN. In this
work, we consider the latest version of HANUMAN, with fixed domain separation.
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is not a multiple of r bits long, the last ciphertext is derived slightly differently, and we
refer to [2,3].

The scheme is designed and proven to be 2¢/? secure against nonce-misusing adver-
saries up to common prefix [4]. We now consider the security of APE in the nonce-
respecting setting, and present an adversary that breaks the privacy with a complexity
of about 2¢/2. We assume that the adversary can make blockwise queries to the scheme.
In more detail, upon an authenticated encryption of M1, ..., M,, it only needs to input
the jth message block after it receives the j — 1 ciphertext block, for j =2, ..., v.

Proposition 1. Let IT = (€, D) be APE based on an ideal underlying primitive p.
Then,

A0, gg, he) = 1—2/2" (30)

where all gg queries are of length 2€tV/2 £ 1)/gs + p + 1.

Proof.  We first consider a simplified setting, where g¢ = 1 and g ~ 2¢/2, and will
generalize the attack to arbitrary g¢ afterward. Denote p = [c/r]. The adversary makes
one query of length A = 2*D/2 1 42 as follows. Let N be some nonce, the header
H is absent. Aputs M| = 0,and M; = C;_; fork € {2, ..., Ag}. If there exist distinct
k,k' € {2,...,Le — p} such that

(Chs s Crp) = (Cprs - .-, Crgp) €29

then it outputs 1; otherwise it outputs 0. Note that if A converses with g, then (31)
holds if the permutation calls for M and My are the same. As the outer parts are O for
both, this holds with probability at least 1/2¢. Therefore, any such k # k' exist with
probability at least (*27~")/2¢. On the other hand, if A converses with $, then this

would only hold with probability (*¢~") /2D Thus,

i Ae—p—1 Ae—p—1
AdVII)-;lv(O, 1, hg) > ( £ 210 >/2c _ < & 2:O )/Z(P-H)r‘

Putting hg = 2TD/2 4 p + 2 gives 2¢ < (*77) < 2¢*! and subsequently
Adv Y (0,1,208D72 4 p42) > 1-2/2".

The analysis straightforwardly generalizes to g¢ queries of total length Ag. Denote
e = Ag/qe, without loss of generality assuming that Ag is a multiple of gg. For
the jth query for j € {1,..., gg}, the adversary proceeds as follows. Let N; be the
unique nonce, the adversary does not query a header, as before. It takes M; = 0,
and sets Mj; = Cj—1 fork € {2,..., ug}. If there exist j, j e {l,...,q¢} and
k k' €{2,..., e — p} with (j, k) # (j’, k) such that

(Clks - Cjkrp) = Cjrprs o, Cirprgp) s (32)
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then it outputs 1; otherwise it outputs 0. The same analysis as before gives

i —p =D\ .. —p—1
AGV™ (0, e, genne) = (qg(ug ; P )>/2L B <qg(u5 ; P )>/2<,,+1),.

Consequently, for gejtg = 2€tD/2 4 (p + Dgg + 1, we have Advir" (0, gg, 2D/ ¢
(p+1)ge+1) = 1—2/2". Each of the g¢ queries is of length approximately (2(+1/2 4
D/ge +p+ 1 O

8. Conclusions

In this work we analyzed one of the Sponge-based authenticated encryption designs in
detail, NORX, and proved that it achieves security of approximately min{2b/ 2 9c K 1
significantly improving upon the traditional bound of min{2¢/2, 2€}. Additionally, we
showed that this proof straightforwardly generalizes to five other CAESAR modes,
Ascon, BLNK (of CBEAM/STRIBOB), ICEPOLE, Keyakvl, and PRIMATEs. Our
findings indicate an overly conservative parameter choice made by the designers, imply-
ing that some designs can improve speed by a factor of 4 at barely any security loss. It is
expected that the security proofs also generalize to the modes of Artemia [1]. However,
this mode is based on the JH hash function [96] and XORs data blocks in both the rate
and inner part. It does not use domain separations, rather it encodes the lengths of the
inputs into the padding at the end [9]. Therefore, a generalization of the proof of NORX
to Artemia is not entirely straightforward.

The results in this work are derived in the ideal permutation model, where the underly-
ing primitive is assumed to be ideal. We acknowledge that this model does not perfectly
reflect the properties of the primitives. For instance, it is stated by the designers of Ascon,
NORX, and PRIMATEs that non-random (but harmless) properties of the underlying
permutation exist. Furthermore, it is important to realize that the proofs of security for
the modes of operation in the ideal model do not have a direct connection with secu-
rity analysis performed on the permutations, as is the case with block ciphers modes of
operation. Nevertheless, we can use these proofs as heuristics to guide cryptanalysts to
focus on the underlying permutations, rather than the modes themselves.
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Appendix: Proof Technique Used in Lemma 3

Formally, the proof technique used in Lemma 3 relies on the following paradigm. Note
that there is an ordering of the ¢, + o¢ primitive queries, and we can reformulate
guess(¥), hit(¢), key(¢), and multi(¢) for £ = 1, ..., g, + og analogously. Likewise
define event(¢{) = guess(¢) Vv hit(¢) and help(¢) = key(£) v multi(¢), and define
event(l...¢) =event(l)Vv---vevent(£) and help(l...¢) = help(1)Vv---Vvhelp(¥)
for brevity. Then, we have

Pr (event)

< Pr (event(g, + og) | ~event(l...q, +og — 1) A =help(1...q, + o¢))
+Pr (event(l...q, + o — 1) Vv help(l ... g, + 0¢)),

qptoe

and inductively Pr (event) < > ;" " Pr(event(¢) | —event(l...£ — 1) A —help

(1.

..£)) +Pr (help(¢) | —=help(1...¢ — 1)). This formulation would however merely

reduce the readability of the proof.
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